Automatic prediction of tongue muscle activations using a finite element model.

نویسندگان

  • Ian Stavness
  • John E Lloyd
  • Sidney Fels
چکیده

Computational modeling has improved our understanding of how muscle forces are coordinated to generate movement in musculoskeletal systems. Muscular-hydrostat systems, such as the human tongue, involve very different biomechanics than musculoskeletal systems, and modeling efforts to date have been limited by the high computational complexity of representing continuum-mechanics. In this study, we developed a computationally efficient tracking-based algorithm for prediction of muscle activations during dynamic 3D finite element simulations. The formulation uses a local quadratic-programming problem at each simulation time-step to find a set of muscle activations that generated target deformations and movements in finite element muscular-hydrostat models. We applied the technique to a 3D finite element tongue model for protrusive and bending movements. Predicted muscle activations were consistent with experimental recordings of tongue strain and electromyography. Upward tongue bending was achieved by recruitment of the superior longitudinal sheath muscle, which is consistent with muscular-hydrostat theory. Lateral tongue bending, however, required recruitment of contralateral transverse and vertical muscles in addition to the ipsilateral margins of the superior longitudinal muscle, which is a new proposition for tongue muscle coordination. Our simulation framework provides a new computational tool for systematic analysis of muscle forces in continuum-mechanics models that is complementary to experimental data and shows promise for eliciting a deeper understanding of human tongue function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using a Biomechanical Model and Articulatory Data for the Numerical Production of Vowels

We introduce a framework to study speech production using a biomechanical model of the human vocal tract, ArtiSynth. Electromagnetic articulography data was used as input to an inverse tracking simulation that estimates muscle activations to generate 3D jaw and tongue postures corresponding to the target articulator positions. For acoustic simulations, the vocal tract geometry is needed, but si...

متن کامل

An Efficient Biomechanical Tongue model for Speech Research

Abstract. We describe our investigation of a fast 3D finite element method (FEM) for biomedical simulation of a muscle-activated human tongue. Our method uses a linear stiffness-warping scheme to achieve simulation speeds which are within a factor 10 of real-time rates at the expense of a small loss in accuracy. Muscle activations are produced by an arrangement of forces acting along selected e...

متن کامل

Efficient 3D Finite Element Modeling of a Muscle-Activated Tongue

We describe our investigation of a fast 3D finite element method (FEM) for biomedical simulation of a muscle-activated human tongue. Our method uses a linear stiffness-warping scheme to achieve simulation speeds which are within a factor 10 of real-time rates at the expense of a small loss in accuracy. Muscle activations are produced by an arrangement of forces acting along selected edges of th...

متن کامل

Estimation of spinal loads using a detailed finite element model of the L4-L5 lumbar segment derived by medical imaging kinematics; a feasibility study

Introduction: Low back pain is the most prevalent orthopedic disorder and the first main cause of poor working functionality in developed as wells as many developing countries. In Absence of noninvasive in vivo measurement approaches, biomechanical models are used to estimate mechanical loads on human joints during physical activities. To estimate joint loads via musculoskelet...

متن کامل

Prediction of Human Vertebral Compressive Strength Using Quantitative Computed Tomography Based Nonlinear Finite Element Method

Introduction: Because of the importance of vertebral compressive fracture (VCF) role in increasing the patients’ death rate and reducing their quality of life, many studies have been conducted for a noninvasive prediction of vertebral compressive strength based on bone mineral density (BMD) determination and recently finite element analysis. In this study, QCT-voxel based nonlinear finite eleme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomechanics

دوره 45 16  شماره 

صفحات  -

تاریخ انتشار 2012